Type ODE SERIES SOLUTION
(2) Solve the equation

$$
\begin{aligned}
& \text { solve the equation } \\
& \frac{d^{2} y}{d x^{2}}+(x-1)^{2} \frac{d y}{d x}-4(x-1) y=0 \text { in series }
\end{aligned}
$$ about the ordinary point $x=1$

Sol: Let us take the transformation

$$
\begin{aligned}
& z=x-1 \text { ide } x-1=z \quad \longrightarrow \frac{d z}{d x}=1 \\
& \therefore \frac{d x}{d y}=\frac{d z}{d y} \\
& \Rightarrow \frac{d y}{d x}=\frac{d y}{d z} \\
& \longrightarrow \frac{d}{d x}(y)=\frac{d}{d z}(y) \\
& \Rightarrow \frac{d}{d x}=\frac{d}{d z} \text { (ide (enamor } \\
& \text { pare }
\end{aligned}
$$

Also.

$$
\text { 0. } \begin{aligned}
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) & =\frac{d}{d x}\left(\frac{d y}{d z} \cdot \frac{d z}{d x}\right) \\
& =\frac{d}{d z}\left(\frac{d y}{d z}\right) \cdot \frac{d z}{d x} \\
& =\frac{d^{2} y}{d z^{2}} \cdot 1 \\
\therefore \frac{d^{2} y}{d x^{2}} & =\frac{d^{2} y}{d z^{2}}
\end{aligned}
$$

putting these in (1) we get

$$
\Rightarrow \cdot \frac{d z}{d x}
$$

$$
\frac{d^{2}}{d z^{2}}+z^{2}-\frac{d y}{d z}-4 z y=0
$$

which shows that $z=0$ is an ordinary point.i of the equation (2)
ort Let us assume the solution of (2) as

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{B}
\end{equation*}
$$

Differentiating (3) w.r.t. z twice, we get

$$
\begin{aligned}
& \frac{d z}{d z}=\sum_{n=1}^{\infty} n a_{n} z^{n-1} \\
& \frac{d^{2} y}{d z^{2}}=\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}
\end{aligned}
$$

- Substituting these in (2) we get

$$
\begin{align*}
& \left.\sum_{n=2}^{n} n_{n}-1\right) a_{n} z^{n-2}+z^{2} \sum_{n=1}^{\infty} n a_{n} z^{n-1}-4 z \sum_{n=0}^{\infty} a_{n} z^{n}=0 \\
\Rightarrow & \sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}+\sum_{n=1}^{\infty} n a_{n} z^{n+1}-4 \sum_{n=0}^{\infty} a_{n} z^{n+1}=0 \\
\Rightarrow & \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} z^{n}+\sum_{n=2}^{\infty}(n-1) a_{n-1} z^{n}-4 \sum_{n=1}^{\infty} a_{n-1} z^{n}=0 \\
\Rightarrow & \sum_{n=0}^{1}(n+2)(n+1) a_{n+2} z^{n}+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} z^{n} \\
& +\sum_{n=2}^{\infty}(n-1) a_{n-1} z^{n}-4 a_{0} z-4 \sum_{n=2}^{\infty} a_{n-1} z^{n}=0 \\
\Rightarrow & 2 a_{2}+6 a_{3} z+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} z^{n}+\sum_{n=2}^{\infty}(n-1) a_{n-1} z^{n} \\
& -4 a_{0} z-4 \sum_{n=2}^{\infty} a_{n-1} z^{n}=0 \\
& \left.\quad \sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2}+(n-1) a_{n-1}-4 a_{n-1}\right] z^{n} \\
& +2 a_{2}+\left(6 a_{3}-4 a_{0}\right) z \tag{4}
\end{align*}
$$

Relation (4) is valid $\forall Z(-R, R)$ where R is the radius of convergence of the powerseries(3) Therefore the coefficient of each term in the L.H.S of (4) must be zero, which gives

$$
\begin{gathered}
2 a_{2}=0 \Rightarrow a_{2}=0 \\
6 a_{3}-4 a_{0} \Rightarrow a_{3}=\frac{2 a_{0}}{3} \\
(n+2)(n+1) a_{n+2}+(n-1) a_{n-1}-4 a_{n-1}=0 \\
\Rightarrow(n+2)(n+1) a_{n+2}+2 a_{n-1}-5 a_{n-1}=0
\end{gathered}
$$

1. $\Rightarrow a_{n+2}=\frac{5 a_{n-1}-n \pi_{n-1}}{(n+2)(n+1)}, \forall \dot{n} \geqslant 2$ Reurrerice

$$
\Rightarrow a_{n+2}=\frac{5 i_{n-1}-n \pi_{n-1}}{(n+2)(n+1)}, \forall n \geqslant 2 \text { Recurrence } \begin{aligned}
& \text { Relation. } \\
& \text { R }
\end{aligned}
$$

putting, $x=2,3,4$ in (5) respectively, we get

$$
\begin{aligned}
& a_{4}=\frac{5 a_{1}-2 a_{1}}{12}=\frac{a_{1}}{4} \\
& a_{5}=\frac{5 a_{2}-3 a_{2}}{20}=\frac{2 a_{2}}{20}=0 \quad\left[\because a_{2}=0\right] \\
& a_{6}=\frac{5 a_{3}-4 a_{3}}{30}=\frac{a_{3}}{30}=\frac{2 a_{0}}{90}=\frac{a_{0}}{45}
\end{aligned}
$$

and so on.
Now, substituting all the values of a_{2}, a_{3}, a_{4}, $a_{5}, a_{6}, \ldots .$. in (3) we get

$$
\begin{aligned}
& y= \sum_{n=0}^{\infty} a_{n} z^{n} \\
&= a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+a_{6} z^{6}+ \\
& \cdots \cdots \cdot \\
&= a_{0}+a_{1} z+\frac{2}{3} a_{0} z^{3}+\frac{a_{1}}{4} z^{4}+\frac{1}{45} a_{0} z^{6}+\cdots \cdot \\
&= a_{0}\left(1+\frac{2}{3} z^{3}+\frac{1}{45} z^{6}+\cdots \cdot\right. \\
&+a_{1}\left(z+\frac{1}{4} z^{4}+\cdots \cdots\right) \\
&= a_{0}\left\{1+\frac{2}{3}(x-1)^{3}+\frac{1}{45}(x-i)^{6}+\cdots \cdots\right\} \\
&+a_{1}\left\{(x+1)+\frac{1}{4}(x-1)^{4}+\cdots \cdot \cdots\right\}
\end{aligned}
$$

-where a_{0}, i_{1} are arbitrary constant. Which is the required ralntion.
process -2
Find the general solution of the ODE

$$
\frac{d^{2}}{d x^{2}}+(x-1) \frac{d y}{d x}+y=0 \text { near } 2 \text {. }
$$

Son ${ }^{n}$.

$$
\frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}+y=0
$$

Here,

$$
\begin{aligned}
& P(x)=(x-1) . \\
& Q(x)=1 .
\end{aligned}
$$

- Which are both analytic at $x=2$.
$\therefore x=2$ is an ordinasigy point.
Let us asswone a solution of the form

$$
y=\sum_{n=0}^{\infty} a_{n}(x-2)^{n}
$$

(1) ifferentiationg (2) writ. x twice me get

$$
\begin{aligned}
& \frac{d y}{d x}=\sum_{n=1}^{\infty} n a_{n}(x-2)^{n-1} \\
& \frac{d^{2} y}{d x^{2}}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-2)^{n-2}
\end{aligned}
$$

Substitution g these in (1) we get.

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n(n-1) a_{n}(x-2)^{n-2}+(x-1) \sum_{n=1}^{\infty} n a_{n}(x-2)^{n-1} \\
&+\sum_{n=0}^{\infty} a_{n}(x-2)^{n}=0 \\
& \Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n}(x-2)^{n-2}+(x-2+1) \sum_{n=1}^{\infty} n a_{n}(x-2)^{n-1} \\
&+\sum_{n=0}^{\infty} a_{n}(x-2)^{n}=0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n}(x-2)^{n-2}+\sum_{n=1}^{\infty} n a_{n}(x-2)^{n} \\
&+\sum_{n=1}^{\infty} n a_{n}(x-2)^{n-1}+\sum_{n=0}^{\infty} a_{n}(x-2)^{n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-2)^{n}+\sum_{n=1}^{\infty} n a_{n}(x-2)^{n} \\
&+\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-2)^{n}+\sum_{n=0}^{\infty} a_{n}(x-2)^{n}=0 \\
& \Rightarrow 2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2}(x-2)^{n}+\sum_{n=1}^{\infty} n a_{n}(x-2)^{n} \\
& a_{1}+\sum_{n=1}^{\infty}(n+1) a_{n+1}(x-2)^{n}+a_{0}+\sum_{n=1}^{\infty} a_{n}(x-2)^{n}=0 \\
& \Rightarrow+\left(2 a_{2}+a_{1}+a_{0}\right)=0
\end{align*}
$$

Relation (3) is valid $\forall(x-2) \in(-R, R)$, where R is the radius of convergence of the power series
$\begin{array}{ll}n-1 \\ 2)^{n-2} & \text { (2) }\end{array}$
Therefore the coefficients of each term in the: L.H.'s of (3) must be zero, which givers.

$$
\begin{align*}
& 2 a_{2}+a_{1}+a_{0}=0 \Rightarrow a_{2}=-\frac{1}{2} a_{1}-\frac{1}{2} a_{0} \\
& (n+2)(n+1) a_{n+2}+n a_{n}+(n+1) a_{n+1}+a_{n}=0, \forall n \geqslant 1 \\
& \Rightarrow a_{n+2}=\frac{-(n+1) a_{n}-(n+1) a_{n+1}, \forall n \geqslant 2}{(n+2)(n+1)}, \text { (4) } \tag{4}
\end{align*}
$$

putting $n=1,2$, in (4) respectively, we get

$$
\begin{aligned}
& a_{3}=\frac{-2 a_{1}-2 a_{2}}{6}=-\frac{1}{3} a_{1}-\frac{1}{3} a_{2} \\
&=-\frac{1}{3} a_{1}-\frac{1}{3}\left\{-\frac{1}{2} a_{1}-\frac{1}{2} a_{0}\right\} \\
&=-\frac{1}{3} a_{1}+\frac{1}{6} a_{1}+\frac{1}{6} a_{0} \\
&=-\frac{a_{1}}{6}+\frac{a_{0}}{6} \\
& \begin{aligned}
a_{4}=\frac{-3 a_{2}-3 a_{3}}{12} & =-\frac{1}{4} a_{2}-\frac{1}{4} a_{3} \\
& =-\frac{1}{4}\left\{-\frac{1}{2} a_{4}-\frac{1}{2} a_{0}\right\}-\frac{1}{4}\left\{-\frac{a_{1}}{6}+\frac{a_{0}}{6}\right\} \\
& =\frac{1}{8} a_{1}+\frac{1}{8} a_{0}+\frac{1}{24} a_{1}-\frac{1}{24} a_{0} \\
& =\frac{1}{6} a_{1}+\frac{1}{12} a_{0}
\end{aligned}
\end{aligned}
$$

\ldots........nat so on.
Now, mbistituting all the valuers of $a_{2}, a_{3}, a_{4}, \ldots$
\cdots in (2) we get

$$
\left.\begin{array}{rl}
y= & \sum_{n=0}^{\infty} a_{n}(x-2)^{n} \\
= & a_{0}+a_{1}(x-2)+a_{2}(x-2)^{2}+a_{3}(x-2)^{3}+a_{4}(x-2)^{4} . \\
& \quad \cdots \cdots \cdot \\
=a_{0} & +a_{1}(x-2)-\frac{1}{2} a_{1}(x-2)^{2}-\frac{1}{2} a_{0}(x-2)^{2} \\
& -\frac{a_{1}}{6}(x-2)^{3}+\frac{a_{0}}{6}(x-2)^{3}+\frac{a_{1}}{6}(x-2)^{4}+\frac{1}{12} a_{0}(x-2)^{4} \\
& \quad+\cdots \cdot \\
= & a_{0}\left\{1-\frac{1}{2}(x-2)^{2}+\frac{1}{6}(x-2)^{3}+\frac{1}{12}(x-2)^{4}+\cdots\right\}
\end{array}\right\}
$$

where a_{0}, a_{1} are arbitrary constants.
-which is the required solution.

