(A) Locate and classify the singular points (if exist):-
(1). $x(x-1)^{3} \frac{d^{2} y}{d x^{2}}-2(x-1)^{2} y^{1}+5 y=0$ Its normalised formed is

$$
y^{\prime \prime}-\frac{2}{x(x-1)} y^{\prime}+\frac{5}{x(x-1)^{3}} y=0
$$

Here,
$P(x)=-\frac{2}{x(x-1)}$, is not analytic at $x=0$ and $x=1$
$Q(x)=\frac{5}{x(x-1)^{3}}$, is not analytic at $x=0$ and $x=1$
$\therefore x=0,1$ are the singular points.
Now,

$$
(x-0) \cdot P(x)=-\frac{2 x}{x(x-1)}=-\frac{2}{x-1}
$$

is analytic at $x=0$

$$
(x-0)^{2} \cdot Q(x)=\frac{5 x}{(x-1)^{3}} \text {, is analytic at } x=0
$$

$\therefore x=0$ is a regular singular point.
Again.
$(x-1) P(x)=-\frac{2}{x}$, is analytic at $x=1$
$\left((x-1)^{2} Q(x)=\frac{5}{x(x-1)}\right.$, is not analytic at $x=1$.
$\therefore x=1$ is an irregular singular point.

Atemiporlr
(2) $\left(x^{2}-3 x\right) y^{11}+(x+1) y^{1}-2 y=0$

Its normalised form is

$$
y^{\prime \prime}+\frac{x+1}{x(x-3)} y^{\prime}-\frac{2}{x(x-3)} y=0
$$

Here, $p(x)=\frac{x+1}{x(x-3)}$, is not analytic at. $x=0$ and $x=3$
$Q(x)=-\frac{2}{x(x-3)}$, is not analytic at
$x=0 \quad x=+3$

$$
x=0, x=+3
$$

$\therefore x=0,3$ are the singular points.
Now,
$(x-0) P(x)=\frac{x+1}{x-3}$, is malytic at $x=0$
$(x-0)^{2} Q(x)=-\frac{2 x}{(x-3)}$, is malytic at $x=0$
$\therefore x=0$ is a regular singular point.
$=0$ Again.
$(x-3) P(x)=\frac{x+1}{x}$, is malytic at $x=3$.

$$
(x-3)^{2} Q(x)=\frac{-2(x-3)}{x} \text {, is analytic at } x=3 \text {. }
$$

11
ic ! $\quad \therefore x=3$ is a regular singular point.
3. $x^{2}(x+1)^{2} y^{11}+2\left(x^{2}-1\right) y^{1}-3 y=0$

Its normalised form is

$$
z^{\prime \prime}+\frac{2\left(x^{2}-1\right)}{x^{2}(x+1)^{2}} z^{\prime}-\frac{3}{x^{2}(x+1)^{2}} y=0
$$

Here,

$$
\begin{aligned}
& P(x)=\frac{2\left(x^{2}-1\right)}{x^{2}(x+1)^{2}}, \text { is not analytic } \\
& Q(x)=0,-1 \\
& -\frac{3}{x^{2}(x+1)^{2}}, \text { is not analytic } \\
& \text { at } x=0,-1
\end{aligned}
$$

$\therefore x=0,-1$ are the singular points.
Now,

$$
\begin{aligned}
& (x-0) P(x)=\frac{2\left(x^{2}-1\right)}{x(x+1)^{2}}, \text { is } x \text { at analytic } x=0 . \\
& (x-0)^{2} Q(x)=-\frac{3}{(x+1)^{2}}, \text { is analytic } \\
& \text { at } x=0
\end{aligned}
$$

$\therefore x=0$ is an irregular singular point.
Again,

$$
\text { in, } \begin{aligned}
(x+1) P(x) & =\frac{2\left(x^{2}-1\right)}{x^{2}(x+1)}, \text { is analytic } \\
& =\frac{2(x+1)}{x^{2}} \text { at } x=-1 \\
(x+1)^{2} B(x)= & -\frac{3}{x^{2}}, \text { is analytic at } \\
x & =-1
\end{aligned}
$$

$\therefore x=-1$ is a regular singular point.
4. $\left(x^{3}+x^{2}\right) y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}-y=0$

Its normalised form irs

$$
\begin{aligned}
& \quad y^{\prime \prime}+\frac{x(x-2)}{x^{2}(x+1)} y^{\prime}-\frac{1}{x^{2}(x+1)} y=0 \\
& \Rightarrow \quad y^{\prime \prime}+\frac{(x-2)}{x(x+1)} y^{\prime}-\frac{1}{x^{2}(x+1)} y=0
\end{aligned}
$$

ic. Here, $P(x)=\frac{x-2}{x(x+1)}$, is not analytic at $x=0,-1$
$Q(x)=-\frac{1}{x^{2}(x+1)}$, is rot analytic at
$x=0,-1$.

$$
x=0,-1 .
$$

ic
$\therefore x=0,-1$ are the singular points.
Now, $\begin{array}{r}(x-0) P(x)=\frac{x-2}{x+1}, \text { is analytic at } \\ x=0\end{array}$
$(x-0)^{2} Q(x)=-\frac{1}{x+1}$, is analytic at $x=0:$
ic $: x=0$ is a regular singular point.
Again,
$(x+1) P(x)=\frac{(x-2)}{x}$, is analytic at $x=-1$
$(x+1)^{2} g(x)=-\frac{x+1}{x^{2}}$, is analytic at $x=-1$
$\therefore x=-1$ is a regular singular point.
5. $\left(x^{4}-2 x^{3}+x^{2}\right) y^{\prime \prime}-4(x-1) y^{\prime}-5 x^{2} y=0$

Its normalised form is $\mid x^{4}-2 x^{3}+x^{2}$

$$
\begin{aligned}
y^{\prime \prime}-\frac{4}{x^{2}(x-1)} y^{\prime}-\frac{5}{(x-1)^{2}} y=0 & =x^{2}\left(x^{2}-2 x+1\right) \\
& =x^{2}(x-1)^{2}
\end{aligned}
$$

Here, $\quad P(x)=-\frac{4}{x^{2}(x-1)}$,
is not analytic at $x=0,1$
$Q(x)=-\frac{5}{(x-1)^{2}}$, is not analytic at $x=1$
$\therefore x=0,1$ are the singular points.
Now, $(x-0) \cdot P(x)=-\frac{4}{x(x-1)}$, is not analytic at $x=0$
$(x-0)^{2} \cdot \theta(x)=-\frac{5 x^{2}}{(x-1)^{2}}$, is analytic at $x=0$
$\therefore x=0$ is an irregular singular point.
Again.
$(x-1) \cdot P(x)=-\frac{4}{x^{2}}$, is analytic at $x=1$
$(x-1)^{2} \cdot Q(x)=-5$, is analytic at
everywhere. everywhere.
$\therefore x=1$ is a regular singular poiret.
6. $\quad\left(x^{3}+x^{2}\right) y^{\prime \prime}+\left(x^{2}-2 x\right)^{\prime} y^{\prime}+4 y=0$

$$
\Rightarrow x^{2}(x+1) y^{\prime \prime}+x(x-2) y^{\prime}+4 y=0
$$

Its normalised form is

$$
y^{\prime \prime}+\frac{(x-2)}{x(x+1)}+\frac{4}{x^{2}(x+1)} y=0
$$

Here, $p(x)=\frac{x-2}{x(x+1)}$, is not analytic at

$$
x=0,-1
$$

. $Q(x)=\frac{4}{x^{2}(x+1)}$, is not analytic at

$$
x=0,-1
$$

$\therefore x=0,-1$ are the singular points.
ic
Now,
$(x-0) \cdot P(x)=\frac{x-2}{x+1}$, is analytic at $x=0$
$(x-0)^{2} \cdot Q(x)=\frac{4}{x+1}$, is malytie at $x=0$
$\therefore x=0$ is a regular singular point.
Again.
$(x+1) \cdot P(x)=\frac{x-2}{x}$, is analytic at

$$
x=-1
$$

$(x+1)^{2} \cdot Q(x)=\frac{4(x+1)}{x^{2}}$, is analytic at $x=-1$
$\therefore x=-1$ is a regular singular point.
7. $\left(x^{5}+x^{4}-6 x^{3}\right) y^{\prime \prime}-x^{2} y^{\prime}-2(x-2) y=0$ Its normalised form is $x^{5}+x^{4}-6 x^{3}$ $\begin{aligned} y^{\prime \prime}-\frac{1}{x(x-2)(x+3)} y^{\prime}-\frac{2}{x^{3}(x+3)} y=0 & =x^{3}\left(x^{2}+x-6\right) \\ & =x^{3}(x-2)(x+3)\end{aligned}$
Here, $P(x)=-\frac{1}{x(x-2)(x+3)}$, is not analytic at $x=0,2,-3$
$Q(x)=-\frac{2}{x^{3}(x+3)}$, is not analytic at

$$
x=0,-3
$$

$\therefore x=0,2,-3$ are the singular points.
Now,

$$
\begin{aligned}
&(x-0) \cdot P(x)=-\frac{1}{(x-2)(x+3)} \text { is analytic at } x=0 \\
&(x-0)^{2} \cdot Q(x)=-\frac{2}{x(x+3)}, \text { is not analytic } \\
& \text { at } x=0
\end{aligned}
$$

$\therefore x=0$ is an irregular singular point.
Again.
$(x-2) \cdot P(x)=-\frac{1}{x(x+3)}$, is analytic at $x=2$
$(x-2)^{2} \cdot Q(x)=\frac{2(x-2)^{2}}{x^{3}(x+3)}$, is analytic at $x=2$.
$\therefore x=2 \quad$ is
$\therefore x=2$ is a regular singular point.
Also, $(x+3) \cdot P(x)=-\frac{1}{x(x-2)}$, is analytic at
$(x+3)^{2} \cdot Q(x)=-\frac{2(x+3)}{x^{3}}$, is analytic
at $x=-3$
$\therefore x=-3$ is a regular singular point.
B. Find the nature of the point $x=0$ for the ODE.
(a) $(x+1) x y^{\prime \prime}+(\sin x) y=0$

Its normalised form is

$$
y^{\prime \prime}+\frac{\sin x}{(x+1) \cdot x} y=0
$$

Here,

$$
\text { e, } P(x)=0 \quad \begin{aligned}
Q(x)=\frac{\sin x}{(x+1) x}=\frac{\frac{x}{L}-\frac{x^{3}}{\frac{1}{3}}+\frac{x^{5}}{5}-\cdots \cdot}{x(x+1)} \\
=\frac{\frac{1}{L}-\frac{x^{2}}{13}+\frac{x^{4}}{L 5}-\cdots}{x+1}
\end{aligned}
$$

So. clearnly at $x=0$, both $P(x)$ and $Q(x)$ are analytic.
$\therefore x=0$ ins an ordinary point.

$$
2 x y^{\prime \prime}-(\cos x) y=0
$$

Its normalised form is

$$
y^{\prime \prime}-\frac{\cos x}{2 x} y=0
$$

Here, $p(x)=0$

$$
\begin{aligned}
& \theta(x)=-\frac{\cos x}{2 x} \\
&=-\frac{\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{4}-\frac{x^{6}}{16}+\cdots \cdot\right)}{2 x} \\
& \text { clearly at } x=0, P(x) \text { is analytic }
\end{aligned}
$$

so, clearnly at $x=0, P(x)$ is analytic but $Q(x)$ is not analytic.
$\therefore x=0$ is a singular point.
Now, $(x-0) \cdot p(x)=0$, is analytic at $x=0$
$(x-0)^{2} \cdot Q(x)=-\frac{1}{2} x \cos x$, is analytic at $x=0$.
$\therefore x=0$ is a regular singular point.
c. $x y^{\prime \prime}+2 x y^{\prime}+(\tan x) y=0$

Its normalised form is

$$
y^{\prime \prime}+2 y^{\prime}+\frac{\tan x}{x} y=0
$$

Here,

$$
P(x)=2 \text {, is analytic at } x=0
$$

$$
\begin{aligned}
Q(x) & =\frac{\tan x}{x} \\
& =\frac{x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\cdots \cdot}{x} \\
& =\frac{1+\frac{x^{2}}{3}+\frac{2 x^{4}}{15}+\cdots}{1},
\end{aligned}
$$

is analytic at $x=0$
$\therefore x=0$ irs an ordinary point.
$\stackrel{1}{=}\left(x^{2}-x\right) y^{\prime \prime}-x y^{\prime}+\log (1+x) y=0$
Its normalised form is

$$
y^{\prime \prime}-\frac{1}{x-1} y^{\prime}+\frac{\log (1+x)}{x(x-1)} y=0
$$

Here, $P(x)=-\frac{1}{x-1}$, is analytic at $x=0$

$$
\begin{aligned}
Q(x) & =\frac{\frac{\log (1+x)}{x(x-1)}}{} \\
& =\frac{\frac{x}{1}-\frac{x^{2}}{2}+\frac{x^{3}}{23}-\cdots}{x(x-1)} \\
& =\frac{\frac{1}{1!}-\frac{x}{\sigma_{20}^{2}}+\frac{x^{2}}{23} \cdots \cdots}{x-1}
\end{aligned}
$$

is malytic at $x=0$
$\therefore x=0$ is an ordinary point.
e. $\quad x^{2} y^{\prime \prime}+y^{1}+(\sinh x) y=0$

Its normalised form is

$$
y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}+\frac{\sinh x}{x^{2}} y=0
$$

Here, $p(x)=\frac{1}{x^{2}}$, is not analytic at $x=0$

$$
\begin{aligned}
Q(x) & =\frac{\sinh x}{x^{2}} \\
& =\frac{x+\frac{x^{3}}{13}+\frac{x^{5}}{15}+\frac{x^{7}}{17}+\cdots}{x^{2}} \\
& =\frac{1+\frac{x^{2}}{13}+\frac{x^{4}}{5}+\frac{x^{6}}{17}+\cdots}{x}
\end{aligned}
$$

is not analytic at $x=0$
$\therefore x=0$ is a singular point.
Now, $(x-0) \cdot p(x)=\frac{1}{x}$, is not and lytic at $x=0$.
$(x-0)^{2} \cdot Q(x)=\sinh x$, is analytic at $x=0$
$\therefore x=0$ is an irregular singular point.

