Type
ODE SERIES SOLUTION
OOF REGULAR, SINGULAR POINT
(4) Find the general series solution of the ODE

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0 \text { about } x=0
$$

sot.

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0 \tag{1}
\end{equation*}
$$

Its normalised form is

$$
y^{\prime \prime}-\frac{x}{2 x^{2}} y^{\prime}+\frac{1-x^{2}}{2 x^{2}} y=0
$$

Here,

$$
\begin{aligned}
& Q(x)=\frac{1-x^{2}}{2 x^{2}}
\end{aligned}
$$

- Both are not analytic at $x=0$

Hence $x=0$ is not arr ordinary print.
Now,

$$
\begin{aligned}
& (x-0) \cdot P(x)=-\frac{x^{2}}{2 x^{2}}=-\frac{1}{2} \\
& (x-0)^{2} \cdot Q(x)=\frac{1}{2}\left(1-x^{2}\right)
\end{aligned}
$$

-which are both aranlytic at $x=0$
Therefore $x=0$ is a regular singular point.
Let us take

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} i_{n} x^{k+n}, a_{0} \neq 0 \tag{2}
\end{equation*}
$$

be a trial power series s solution of (1)

Differentiationg (2).w.r.t. x, twice we get

$$
\begin{aligned}
& \left.\frac{d x}{d x}=\sum_{n=0}^{\infty}\right)(n+n-1 \\
& \frac{d^{2} y}{d x^{2}}=\sum_{n=0}^{\infty}(k+n)(k+n-1) a_{n} x^{k+n-2}
\end{aligned}
$$

putting therse in (1) we get

$$
\begin{align*}
2 x^{2} \cdot & \sum_{n=0}^{\infty}(k+n)(k+n-1) a_{n} x^{k+n-2} \\
& -x \sum_{n=0}^{\infty}(k+n) a_{n} x^{k+n-1}+\left(1-x^{2}\right) \sum_{n=0}^{\infty} a_{n} x^{k+n}=0 \\
\Rightarrow & 2 \sum_{n=0}^{\infty}(k+n)(k+n-1) x_{n} x^{k+n}-\sum_{n=0}^{\infty}(k+n) a_{n} x^{k+n} \\
& +\sum_{n=0}^{\infty} a_{n} x^{k+n}-\sum_{n=0}^{\infty} a_{n} x^{k+n+2}=0 \\
\Rightarrow & \sum_{n=0}^{\infty}\left(2(k+n)(k+n-1) a_{n}-(k+n) a_{n}+a_{n}\right) x^{k+n} \\
\Rightarrow & -\sum_{n=0}^{\infty} a_{n} x^{k+n+2}=0 \\
\Rightarrow & \sum_{n=0}^{\infty}\left[2(k+n)^{2}-3(k+n)+1\right] a_{n} x^{k+n} \\
& -\sum_{n=0}^{\infty} a_{n} x^{k+n+2}=0 \\
\Rightarrow & \sum_{n=0}^{\infty}(2 k+2 n-1)(k+n-1) a_{n} x^{k+n} \\
& -\sum_{n=0}^{\infty} a_{n} x^{k+n+2}=0 \tag{3}
\end{align*}
$$

Relation (3) is valid in sorne deleted neighbourhood of 0 .
Thus equating to zero the coefficient of lowest degree term of $x^{i \cdot}$ in (3) we get

$$
\begin{aligned}
& \therefore k=\frac{1}{2}, k=1 \quad\left[\because a_{0} \neq 0\right]
\end{aligned}
$$

Now, equating to zero the coefficient of x^{k+n} we get the relation

$$
\begin{align*}
& (2 k+2 n-1)(k+n-1) a_{n}-a_{n-2}=0 \\
\Rightarrow & a_{n}=\frac{a_{n-2}}{(2 k+2 n-1)(k+n-1)}, n \geqslant 2 \tag{4}
\end{align*}
$$

Now, equating to zero the coefficient of x^{k+1} we get the relation

$$
(2 k+1)(k) a_{1}=0 \Rightarrow a_{1}=0\left[\text { for } k=\frac{1}{2}, 1\right]
$$

using (4) and (5) we get

$$
a_{4}=a_{3}=a_{5}=\cdots \cdots=0
$$

low, putting $m=2$ in (4) we get

$$
a_{2}=\frac{a_{0}}{(2 k+3)(k+1)}
$$

pouting $n=4$ in (4) we get

$$
a_{4}=\frac{a_{2}}{(2 k+7)(k+3)}=\frac{a_{0}}{(2 k+3)(k+1)(2 k+3)(k+3)}
$$ and so on.

putting these values in (2) me yet
j

$$
\begin{aligned}
& y=a_{0} x^{k}\left[1+\frac{x^{2}}{(k+1)(2 k+3)}\right.+\frac{x^{4}}{(2 k+3)(k+1)(2 k+7)(k+3)} \\
&+\cdots \cdots]
\end{aligned}
$$

Now, for $k=\frac{1}{2}$, replacing as br y 4 we get

$$
\begin{aligned}
y=c_{1} x^{1 / 2}\left[1+\frac{x^{2}}{2 \cdot 3}+\frac{x^{4}}{2 \cdot 3 \cdot 4 \cdot 7}\right. & +\cdots \cdot] \\
& =c_{1} \cdot u
\end{aligned}
$$

for, $k=1$, replacing a_{0} by c_{2} we get

$$
\begin{array}{r}
\Rightarrow \quad y=c_{2} x\left[1+\frac{x^{2}}{2 \cdot 5}+\frac{x^{4}}{2 \cdot 4 \cdot 5 \cdot 9}+\cdots \cdots\right] \\
=\cdots \cdot v
\end{array}
$$

Hence the required complete series
\Rightarrow solution of the given equation iss $y=c_{1} u+c_{2} v$, where c_{1}, c_{2} are arbitrary constants.

