Problems
(1) Determine the mature of the critical point of the system

$$
\frac{d x}{d t}=2 x-7 y, \frac{d y}{d t}=3 x-8 y
$$

arid determine whether or not the point is stable.
-son." The characteristic equation of the sisstern

$$
\begin{aligned}
& \quad\left|\begin{array}{cc}
2-\lambda & -7 \\
3 & -8-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}+6 \lambda+5=0 \\
& \Rightarrow(\lambda+1)(\lambda+5)=0 \\
& \therefore \lambda=-1, \quad \therefore \lambda=-5
\end{aligned}
$$

\therefore The roots are -1 and -5
\# Since the roots are real, unequal and. of the same sign
we conclude that the critical point $(0,0)$. of the system is node.

* Since the roots are real and negative the point is asymptotically stable.
(2) Determine the nature of the critical point of the system

$$
\frac{d x}{d t}=2 x+4 y, \frac{d x}{d t}=-2 x+6 y
$$

The characteristic equation of the sorstem

$$
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & 4 \\
-2 & 6-\lambda
\end{array}\right|=0 \\
\Rightarrow & \lambda^{2}-8 \lambda+20=0 \\
\therefore \lambda & =\frac{8 \pm \sqrt{64-80}}{2}=4 \pm 2 i
\end{aligned}
$$

\therefore The roots are $4+2 i$ and $4-2 i$
$\$$
I Since the roots are conjugate complex but not pure imagionary so we conclude that the critical point $(0,0)$ of the roster is spiral poiort.
\# Stability: Since the real part is positive. = so the point is asymptotically unstable.
(3) Determine the nature of the critical poison of the following linear autonomous ingizems and also comment on stability of the point.
(a) $\frac{d x}{d t}=x+3 y, \frac{d y}{d t}=3 x+y$
(b) $\frac{d x}{d t}=3 x+2 y, \frac{d y}{d t}=x+2 y$
(c) $\frac{d x}{d t}=3 x+4 y, \quad \frac{d y}{d t}=3 x+2 y$
(d) $\frac{d x}{d t}=2 x+5 y, \frac{d y}{d t}=x-2 y$
(e) $\frac{d x}{d t}=2 x-4 y, \frac{d y}{d t}=2 x-2 y$
(f) $\frac{d x}{d t}=x-2 y$, $\frac{d x}{d t}=4 x+5 y$
(7) $\frac{d x}{d t}=x-y, \frac{d x}{d t}=x+5 y$
(h) $\frac{d x}{d t}=x+7 y, \frac{d y}{d t}=3 x+5 y$
sot?
(a) The characteristic equation of the system
stern

$$
\begin{aligned}
& \left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-2 \lambda-8=0 \\
& \Rightarrow(\lambda-4)(\lambda+2)=0 \\
& \therefore \lambda=-2,4
\end{aligned}
$$

\therefore The roots are $-2,4$
\# since the roots are real, unequal and of 1 the oppositie sign so we conclude that the critical point $(0,0)$ is a saddle point.
\# The point is unstable.
(b) The characteristic equation of the system

$$
\begin{aligned}
& \quad\left|\begin{array}{cc}
3-\lambda & 2 \\
1 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-5 \lambda+4=0 \\
& \Rightarrow(\lambda-1)(\lambda-4)=0 \\
& \therefore \lambda=1,4
\end{aligned}
$$

\therefore The roots are 1 and 4
\# Since the roots are real, unequal and of the same sign so we conclude that the critical point $(0,0)$ ins rode.
\# since the roots are real and positive so the critical point is asymptotically.
unstable.
(c) The characteristic equation of the syrstern

$$
\begin{aligned}
& \therefore\left|\begin{array}{cc}
3-\lambda & 4 \\
3 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-5 \lambda-6=0 \\
& \Rightarrow(\lambda+1)(\lambda-6)=0 \\
& \therefore \lambda=-1,6
\end{aligned}
$$

(e) The
\therefore The roots are -1 and 6
\# Since the roots are real, unequal and of the opposite sign so we conclude that the critical. point $(0,0)$ is saddle point.

The point ins unstable.

- (a) The characteristic equation of the srystern

$$
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & 5 \\
1 & -2-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-9=0 \\
& \Rightarrow(\lambda+3)(\lambda-3)=0 \\
& \therefore \lambda=3,-3
\end{aligned}
$$

\therefore The roots are 3 and -3
\# Since the roots are real, unequal arid of the opposite sign so me conclude that the critical point $(0,0)$ iss saddle poirot.
\# The poirot irs unstable.
e (e) The characteristic equation of the system

$$
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & -4 \\
2 & -2-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}+4=0 \\
& \therefore \lambda= \pm 2 i
\end{aligned}
$$

\therefore The roots are $2 i$ and $-2 i$
\# Since the roots are purely imaginary so we conclude that the critical point $(0,0)$ ins centre.
\# The point is stable but rot asymptotically. :
(f) The characteristic equation of the system

$$
\begin{aligned}
&\left|\begin{array}{cc}
1-\lambda & -2 \\
4 & 5-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-6 \lambda+13=0 \\
& \therefore \lambda=\frac{6 \pm \sqrt{36-52}}{2}=3 \pm 2 i
\end{aligned}
$$

\therefore The roots are $3+2 i$ and $3-2 i$
\# Since the roots are conjugate corrplex but not purely irnoginariy so we conclude that the critical point $(0,0)$ is spiral point.
\# Since the real part of the roots are positive so the point in asymptotically instable.
(g) The Characteristic equation of the system

$$
\begin{aligned}
&\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 5-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}-6 \lambda+6=0 \\
& \therefore \lambda=\frac{6 \pm \sqrt{36-21}}{2}=\frac{6 \pm 2 \sqrt{3}}{2}=3 \pm \sqrt{3} \\
&\left(\begin{array}{rl}
(\text { forme } \\
3+\sqrt{3} & =\text { positive } \\
3-\sqrt{3} & =\text { positive }
\end{array}\right)
\end{aligned}
$$

\therefore The roots are $3+\sqrt{3}$ and $3-\sqrt{3}$
\# Since the roots are real, unequal and of the same sign so we conclude that the critical point $(0,0)$ is node.
\# Since the roots are real and positive so the point is asymptotically unstable
(h) The characteristic equation of the syr stem

$$
\left|\begin{array}{cc}
1-\lambda & 7 \\
3 & 5-\lambda
\end{array}\right|=0
$$

$$
\begin{aligned}
& \Rightarrow \lambda^{2}-6 \lambda-16=0 \\
& \Rightarrow(\lambda-8)(\lambda+2)=0 \\
& \therefore \lambda=-2,8
\end{aligned}
$$

x The roots are -2 and 8
"nude since the roots are real, unequal and of the opposite sigh n so we conclude that the critical point (0,0) iss saddle point.
: ally \# The point is unstable.
(4) consider the linear autonomous system

$$
\begin{aligned}
& \frac{d x}{d t}=x+y \\
& \frac{d y}{d t}=3 x-y
\end{aligned}
$$

i) Find the general volution of this system
ii) Determine the nature of the critical point of the system.
iii) comment on the stability.
son ${ }^{n}$
(i) The given equations can be written as

$$
\begin{align*}
& (D-1) x-y=0 \tag{1}\\
& -3 x+(D+1) y=0
\end{align*}
$$

(2), where $D \equiv \frac{d}{d t}$

1
he
Elioninationg or from (1) and (2) we get

$$
\left.D^{2}+2 A D A A+D^{2}-1-3\right) x=0
$$

$$
\begin{equation*}
\Rightarrow\left(D^{2}-4\right) x=0 \tag{3}
\end{equation*}
$$

vole.
The auxiliary equations of (3) irs

$$
m^{2}-4=0 \quad=m= \pm 2
$$

-Alonourpadhres
\therefore General solution of (3) is

$$
\begin{equation*}
x=c_{1} e^{-2 t}+c_{2} e^{2 t} \text {, where } c_{1}, c_{2} \text { are } \tag{4}
\end{equation*}
$$ arbitrary constant.

Now from (1) we get

$$
\begin{align*}
y & =(D-1) x \\
& =(D-1)\left\{c_{1} e^{-2 t}+c_{2} e^{2 t}\right\} \\
& =-2 c_{1} e^{-2 t}+2 c_{2} e^{2 t}-c_{1} e^{-2 t}-c_{2} e^{2 t} \\
& =\left(-2 c_{1}-c_{1}\right) e^{-2 t}+\left(2 c_{2}-c_{2}\right) e^{2 t} \\
& =-3 c_{1} e^{-2 t}+c_{2} e^{2 t}
\end{align*}
$$

(4) and (5) give the general Aroulution of the given sr stern.
(ii) The characteristic equation of the system

$$
\begin{aligned}
&\left|\begin{array}{cc}
1-\lambda & 1 \\
3 & -1-\lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda^{2}=4=0 \\
& \Rightarrow(\lambda+2)(\lambda-2)=0 \\
&=\lambda=2,-2
\end{aligned}
$$

\therefore The roots are 2 and -2

* Since the roots are real, unequal and of the opposite sigri so we conclude. that the critical point $(0,0)$ is saddle W. point.
\# The point is unstable.

