Acanopador Cor

Determination of critical points

Consider the linear system of ODE

$$\frac{dx}{dt} = ax + by? \qquad (1)$$

$$\frac{dy}{dt} = cx + dy$$

Where a, b, c, d are real corretarities.

The origina (0,0) is a critical point or equilibrium point of the ismistern.

We assume that | a b | +0-

and hence (0,0) is the only critical point of the system. We found the solution of the given equation is of the form

$$x = Ae^{\lambda t}$$

$$y = Be^{\lambda t}$$
(2)

where λ ormst satisfy the quadratic equation $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$ — (3) This equation is called the characteristic equation of the system. The nature of critical points of (1) depends on the roots of the equation (3).

Let the roots of (3) are 2, and 22

Note:
$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0$$

— cooners from $\begin{vmatrix} a-\lambda & b \\ c & d-\lambda \end{vmatrix} = 0$

Scanned with CamScanne

•		AGaingo nolly try
Stability of critical point. Assombotically stable if the roots of th	Assampto tically stable if the roots are '-ve' and asyromptotically of Know. Asynoptotically stable if real part for stable if real part ('-ve') and unstable for wastable if real part is positive (+ve'). Stable but	So, it does not called sink; I know.
Notice of 1, and 1/2 Notice of eritical (i) Real, usingwal, (i) Node some sign. (ii) Real, usingwal, (ii) saddile point	(iii) Real and (iii) Node gual. (iv) conjugate (iv) Spinal point avot pure imagi- nut pure imagi- ince this at iff (v) pure (v) pure (v) pure (v) centre	Leverbreer (tem)

Scanned with CamScanner

	A Canopadhe Con
	Stable Sink Sink
	Source (unistable)
į	What is asymptotically stable - worstable?
	suppose $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	$as t \rightarrow \infty$ both zero.
	So, when both is negative then as -
	Sont when both his positive then as sold
	For this situation stable and it is known
	as sions
	> In this situation worstable and it is known
	as source KJ
	@ Saddle point - Q3 Como always worstable.
-	⇒ In this case one & is '-ve' and one & is 't ve'
	(opposite sign)
	$det, \lambda_1 = -ve', \lambda_2 = +ve'$
	then $x = Ae^{\lambda_1 t}$, $y = Be^{\lambda_2 t}$ so, as $t \rightarrow \infty$ one tends to zero and other.
ŀ	so, as t > 0 one tends to zero and other.
	tends to a. so, ultimately unstable.