UN IT -III
\sim Phase- Plame:~
Di. Amine Gaveray

GL. ROSS

Equilibrium points and
phase plane (part of non-linear D.E)
 - this irs called rion-linear Differential equation.

The second order non-linear ODE is of the $=$ form

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=F\left(x, \frac{d x}{d t}\right) \tag{1}
\end{equation*}
$$

For example:

$$
\frac{d^{2} x}{d t^{2}}+M\left(x^{2}-1\right) \frac{d x}{d t}+x=0 \text { (vander-pol equation): }
$$

Where M is positive constant.
we shall consider this equation at a larger stage of the value of t.

Let us suppose equation (1) describers a certain ayrarnical system. The state of this system at tine t is determined by the value of x (position) (phorsicaloneasning) assad $\frac{d x}{d t}$ (velocitry)-phrorsical meaning.

The plane of the variables x and $\frac{d x}{d t}$ is. called a phase plane.

Let us assume $y=\frac{d x}{d t}$, then equation (1). reducers to

$$
\left.\begin{array}{l}
\frac{d x}{d t}=y \tag{2}\\
\frac{d y}{d t}=F(x, y)
\end{array}\right\}
$$

Here t iss a parameter such that the curvers will appear in ny -plane.

Generally we shall consider syrstern of equation of the form

$$
\left.\begin{array}{l}
\frac{d x}{d y}=p(x, y) \tag{3}\\
\frac{d y}{d t}=Q(x, y)
\end{array}\right\}
$$

Where P and Q have contionuons partial derivative for x, y. This system is known as autonomous system.

$$
\rightarrow\left\{\begin{array}{l}
\text { 't' missing in the R.H.S } \\
\frac{d x}{d t}=P(x, r) \\
\frac{d n}{d t}=Q(x, r)
\end{array}\right.
$$

Equilibrium point

Definition: Given the autonomous system

$$
\begin{aligned}
& \frac{d x}{d t}=P(x, y) \\
& \frac{d y}{d t}=Q(x, y)
\end{aligned}
$$

a point $\left(x_{0}, y_{0}\right)$ at which both $p\left(x_{0}, y_{0}\right)=0$ and $Q\left(x_{0}, y_{0}\right)=0$. is called a critical point or equilibrium point or singular point of the equation.

Note
From the above equation eliminating t we get

$$
\frac{d y}{d x}=\frac{Q(x, y)}{P(x, y)}
$$

at a point $\left(x_{0}, v_{0}\right)$ both P and Q are zero i.e the slope of the tanngervt to the path is indeterminate. such a point is known as critical point or equilibrium point or singular point.
for example:
consider the linear autonomous system-.

$$
\left.\begin{array}{l}
\frac{d x}{d t}=y \tag{a}\\
\frac{d y}{d t}=-x
\end{array}\right\}
$$

Elimirationg 't" .are get

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{x}{y} \tag{b}
\end{equation*}
$$

solving, we get
$x^{2}+y^{2}=c^{2} \quad$ which give one.
parameter family of curve. ($c \rightarrow$ parameter)
Equation (b). givers the one parameter family of pathos in the $x y$-phase plane.

Definition: A critical point $\left(x_{0}, y_{0}\right)$ is called isolated if $\left(x_{0}, y_{0}\right)$ is the only critical point within the circle

$$
\begin{aligned}
& \text { lithic the circle } \\
& \left.\left(x-\dot{x}_{0}\right)^{2}+(y-)^{2}\right)^{2}=r^{2}
\end{aligned}
$$

so. in the above example the point $(0,0)$ is the isolated critical point.

